台湾历史天气数据集
此数据集包含过去 128 年的历史气象观测测量数据。每一行都是关于特定日期、时间和气象站点的测量数据。
此数据集的来源在此处可用,气象站编号列表可以在此处找到。
气象数据集的来源包括中央气象局建立的气象站(站点代码以 C0、C1 和 4 开头)以及属于农业委员会的农业气象站(站点代码不是上述那些)。
- 站点ID
- MeasuredDate,观测时间
- StnPres,站点气压
- SeaPres,海平面气压
- Td,露点温度
- RH,相对湿度
- 其他可用要素
下载数据
- 数据的预处理版本,用于 ClickHouse,已经过清理、重构和丰富。此数据集涵盖 1896 年至 2023 年。
- 下载原始原始数据并转换为 ClickHouse 所需的格式。希望添加自己列的用户可能希望探索或完成他们的方法。
预处理数据
数据集也已从每行一个测量值重构为每个气象站 ID 和测量日期一行,即:
StationId,MeasuredDate,StnPres,Tx,RH,WS,WD,WSGust,WDGust,Precp,GloblRad,TxSoil0cm,TxSoil5cm,TxSoil20cm,TxSoil50cm,TxSoil100cm,SeaPres,Td,PrecpHour,SunShine,TxSoil10cm,EvapA,Visb,UVI,Cloud Amount,TxSoil30cm,TxSoil200cm,TxSoil300cm,TxSoil500cm,VaporPressure
C0X100,2016-01-01 01:00:00,1022.1,16.1,72,1.1,8.0,,,,,,,,,,,,,,,,,,,,,,,
C0X100,2016-01-01 02:00:00,1021.6,16.0,73,1.2,358.0,,,,,,,,,,,,,,,,,,,,,,,
C0X100,2016-01-01 03:00:00,1021.3,15.8,74,1.5,353.0,,,,,,,,,,,,,,,,,,,,,,,
C0X100,2016-01-01 04:00:00,1021.2,15.8,74,1.7,8.0,,,,,,,,,,,,,,,,,,,,,,,
这样易于查询,并确保生成的表具有更少的稀疏性,并且某些元素为空,因为它们无法在该气象站中测量。
此数据集在以下 Google CloudStorage 位置可用。您可以将数据集下载到本地文件系统(并使用 ClickHouse 客户端插入它们),或者直接将它们插入到 ClickHouse 中(请参阅从 URL 插入)。
下载
wget https://storage.googleapis.com/taiwan-weather-observaiton-datasets/preprocessed_weather_daily_1896_2023.tar.gz
# Option: Validate the checksum
md5sum preprocessed_weather_daily_1896_2023.tar.gz
# Checksum should be equal to: 11b484f5bd9ddafec5cfb131eb2dd008
tar -xzvf preprocessed_weather_daily_1896_2023.tar.gz
daily_weather_preprocessed_1896_2023.csv
# Option: Validate the checksum
md5sum daily_weather_preprocessed_1896_2023.csv
# Checksum should be equal to: 1132248c78195c43d93f843753881754
原始原始数据
以下详细信息是关于下载原始原始数据以根据需要进行转换和转换的步骤。
下载
下载原始原始数据
mkdir tw_raw_weather_data && cd tw_raw_weather_data
wget https://storage.googleapis.com/taiwan-weather-observaiton-datasets/raw_data_weather_daily_1896_2023.tar.gz
# Option: Validate the checksum
md5sum raw_data_weather_daily_1896_2023.tar.gz
# Checksum should be equal to: b66b9f137217454d655e3004d7d1b51a
tar -xzvf raw_data_weather_daily_1896_2023.tar.gz
466920_1928.csv
466920_1929.csv
466920_1930.csv
466920_1931.csv
...
# Option: Validate the checksum
cat *.csv | md5sum
# Checksum should be equal to: b26db404bf84d4063fac42e576464ce1
检索台湾气象站
wget -O weather_sta_list.csv https://github.com/Raingel/weather_station_list/raw/main/data/weather_sta_list.csv
# Option: Convert the UTF-8-BOM to UTF-8 encoding
sed -i '1s/^\xEF\xBB\xBF//' weather_sta_list.csv
创建表模式
在 ClickHouse 中创建 MergeTree 表(从 ClickHouse 客户端)。
CREATE TABLE tw_weather_data (
StationId String null,
MeasuredDate DateTime64,
StnPres Float64 null,
SeaPres Float64 null,
Tx Float64 null,
Td Float64 null,
RH Float64 null,
WS Float64 null,
WD Float64 null,
WSGust Float64 null,
WDGust Float64 null,
Precp Float64 null,
PrecpHour Float64 null,
SunShine Float64 null,
GloblRad Float64 null,
TxSoil0cm Float64 null,
TxSoil5cm Float64 null,
TxSoil10cm Float64 null,
TxSoil20cm Float64 null,
TxSoil50cm Float64 null,
TxSoil100cm Float64 null,
TxSoil30cm Float64 null,
TxSoil200cm Float64 null,
TxSoil300cm Float64 null,
TxSoil500cm Float64 null,
VaporPressure Float64 null,
UVI Float64 null,
"Cloud Amount" Float64 null,
EvapA Float64 null,
Visb Float64 null
)
ENGINE = MergeTree
ORDER BY (MeasuredDate);
插入到 ClickHouse 中
从本地文件插入
可以从本地文件插入数据,如下所示(从 ClickHouse 客户端):
INSERT INTO tw_weather_data FROM INFILE '/path/to/daily_weather_preprocessed_1896_2023.csv'
其中 /path/to
代表磁盘上本地文件的特定用户路径。
将数据插入 ClickHouse 后,示例响应输出如下:
Query id: 90e4b524-6e14-4855-817c-7e6f98fbeabb
Ok.
131985329 rows in set. Elapsed: 71.770 sec. Processed 131.99 million rows, 10.06 GB (1.84 million rows/s., 140.14 MB/s.)
Peak memory usage: 583.23 MiB.
从 URL 插入
INSERT INTO tw_weather_data SELECT *
FROM url('https://storage.googleapis.com/taiwan-weather-observaiton-datasets/daily_weather_preprocessed_1896_2023.csv', 'CSVWithNames')
要了解如何加速此过程,请参阅我们关于调整大型数据加载的博客文章。
检查数据行数和大小
- 让我们看看插入了多少行
SELECT formatReadableQuantity(count())
FROM tw_weather_data;
┌─formatReadableQuantity(count())─┐
│ 131.99 million │
└─────────────────────────────────┘
- 让我们看看此表使用了多少磁盘空间
SELECT
formatReadableSize(sum(bytes)) AS disk_size,
formatReadableSize(sum(data_uncompressed_bytes)) AS uncompressed_size
FROM system.parts
WHERE (`table` = 'tw_weather_data') AND active
┌─disk_size─┬─uncompressed_size─┐
│ 2.13 GiB │ 32.94 GiB │
└───────────┴───────────────────┘
示例查询
Q1:检索特定年份每个气象站的最高露点温度
SELECT
StationId,
max(Td) AS max_td
FROM tw_weather_data
WHERE (year(MeasuredDate) = 2023) AND (Td IS NOT NULL)
GROUP BY StationId
┌─StationId─┬─max_td─┐
│ 466940 │ 1 │
│ 467300 │ 1 │
│ 467540 │ 1 │
│ 467490 │ 1 │
│ 467080 │ 1 │
│ 466910 │ 1 │
│ 467660 │ 1 │
│ 467270 │ 1 │
│ 467350 │ 1 │
│ 467571 │ 1 │
│ 466920 │ 1 │
│ 467650 │ 1 │
│ 467550 │ 1 │
│ 467480 │ 1 │
│ 467610 │ 1 │
│ 467050 │ 1 │
│ 467590 │ 1 │
│ 466990 │ 1 │
│ 467060 │ 1 │
│ 466950 │ 1 │
│ 467620 │ 1 │
│ 467990 │ 1 │
│ 466930 │ 1 │
│ 467110 │ 1 │
│ 466881 │ 1 │
│ 467410 │ 1 │
│ 467441 │ 1 │
│ 467420 │ 1 │
│ 467530 │ 1 │
│ 466900 │ 1 │
└───────────┴────────┘
30 rows in set. Elapsed: 0.045 sec. Processed 6.41 million rows, 187.33 MB (143.92 million rows/s., 4.21 GB/s.)
Q2:使用特定持续时间范围、字段和气象站获取原始数据
SELECT
StnPres,
SeaPres,
Tx,
Td,
RH,
WS,
WD,
WSGust,
WDGust,
Precp,
PrecpHour
FROM tw_weather_data
WHERE (StationId = 'C0UB10') AND (MeasuredDate >= '2023-12-23') AND (MeasuredDate < '2023-12-24')
ORDER BY MeasuredDate ASC
LIMIT 10
┌─StnPres─┬─SeaPres─┬───Tx─┬───Td─┬─RH─┬──WS─┬──WD─┬─WSGust─┬─WDGust─┬─Precp─┬─PrecpHour─┐
│ 1029.5 │ ᴺᵁᴸᴸ │ 11.8 │ ᴺᵁᴸᴸ │ 78 │ 2.7 │ 271 │ 5.5 │ 275 │ -99.8 │ -99.8 │
│ 1029.8 │ ᴺᵁᴸᴸ │ 12.3 │ ᴺᵁᴸᴸ │ 78 │ 2.7 │ 289 │ 5.5 │ 308 │ -99.8 │ -99.8 │
│ 1028.6 │ ᴺᵁᴸᴸ │ 12.3 │ ᴺᵁᴸᴸ │ 79 │ 2.3 │ 251 │ 6.1 │ 289 │ -99.8 │ -99.8 │
│ 1028.2 │ ᴺᵁᴸᴸ │ 13 │ ᴺᵁᴸᴸ │ 75 │ 4.3 │ 312 │ 7.5 │ 316 │ -99.8 │ -99.8 │
│ 1027.8 │ ᴺᵁᴸᴸ │ 11.1 │ ᴺᵁᴸᴸ │ 89 │ 7.1 │ 310 │ 11.6 │ 322 │ -99.8 │ -99.8 │
│ 1027.8 │ ᴺᵁᴸᴸ │ 11.6 │ ᴺᵁᴸᴸ │ 90 │ 3.1 │ 269 │ 10.7 │ 295 │ -99.8 │ -99.8 │
│ 1027.9 │ ᴺᵁᴸᴸ │ 12.3 │ ᴺᵁᴸᴸ │ 89 │ 4.7 │ 296 │ 8.1 │ 310 │ -99.8 │ -99.8 │
│ 1028.2 │ ᴺᵁᴸᴸ │ 12.2 │ ᴺᵁᴸᴸ │ 94 │ 2.5 │ 246 │ 7.1 │ 283 │ -99.8 │ -99.8 │
│ 1028.4 │ ᴺᵁᴸᴸ │ 12.5 │ ᴺᵁᴸᴸ │ 94 │ 3.1 │ 265 │ 4.8 │ 297 │ -99.8 │ -99.8 │
│ 1028.3 │ ᴺᵁᴸᴸ │ 13.6 │ ᴺᵁᴸᴸ │ 91 │ 1.2 │ 273 │ 4.4 │ 256 │ -99.8 │ -99.8 │
└─────────┴─────────┴──────┴──────┴────┴─────┴─────┴────────┴────────┴───────┴───────────┘
10 rows in set. Elapsed: 0.009 sec. Processed 91.70 thousand rows, 2.33 MB (9.67 million rows/s., 245.31 MB/s.)
鸣谢
我们要感谢中央气象局和农业委员会农业气象观测网(站)在准备、清理和分发此数据集方面所做的努力。我们感谢您的努力。
Ou, J.-H., Kuo, C.-H., Wu, Y.-F., Lin, G.-C., Lee, M.-H., Chen, R.-K., Chou, H.-P., Wu, H.-Y., Chu, S.-C., Lai, Q.-J., Tsai, Y.-C., Lin, C.-C., Kuo, C.-C., Liao, C.-T., Chen, Y.-N., Chu, Y.-W., Chen, C.-Y., 2023. Application-oriented deep learning model for early warning of rice blast in Taiwan. Ecological Informatics 73, 101950. https://doi.org/10.1016/j.ecoinf.2022.101950 [13/12/2022]